
Abstract Analysis of experimental data on grain

boundaries (GBs) can involve putting data into angle

‘‘bins.’’ An example is Brandon’s classification: if

rotation angle and axis are each within 15�=
ffiffiffiffi

R
p

of a

perfect coincidence site lattice (CSL) with density 1/S,

the GBs can also be considered to be in that CSL

relationship, and not if otherwise. Other examples of

binning are studies of GB distributions in the full 5D

angle space. To determine the size of a bin (necessary

for densities, gradients, etc.) one must find a useful

way, respecting symmetry, of determining metrics and

measures on the full 5-dimensional space of both

misorientation and interface normal. For a pair of

low-angle GBs, the issue of metric is complicated by

the fact that both their rotation axes and their GB

normals can stay far apart as their rotation angles

approach zero. We address all these issues as a dialog,

and provide a framework for choosing metrics.

1. Old metallurgist: One of David Brandon’s important

contributions is a widely used, easy-to-apply, classifi-

cation of grain boundaries (GBs) into special or

general GBs for cubic crystals. He suggests that a GB is

‘‘special’’ if the orientation relationship of abutting

crystals is ‘‘close enough’’ to a coincidence site lattice

(CSL) relation, where ‘‘close enough’’ means if two of

the angles characterizing their misorientation are less

than 15=
ffiffiffiffi

R
p

from those of a CSL. All others are gen-

eral GBs. What do you make of this measure of

angular differences between grain boundaries?

Young mathematician: Ah, you are referring to the

following excerpt from Brandon’s The Structure of

High Angle Grain Boundaries [1]: ‘‘The maximum

permissible deviation for coincidence may reasonably

be assumed to be given by ... h0S–1/2... where h0 ’ 15� . . .
Each coincidence lattice covers a range of 4p(1 –

cos(h0 /S1/2)) in axis of misorientation and a range h0 /S1/2

in angular deviation.’’ To me, on closer examination, it

actually gives rise to a very interesting concept of

closeness, which I’ll call dB, a ‘‘Brandon-distance’’

which is not symmetric, not finite, and doesn’t obey the

triangle inequality, all of them conditions that must be

met for the mathematical definition of a distance.

Suppose a CSL with fraction 1/S0 of common sites is

produced when a cubic lattice is rotated about u1 by h1,

where u1 is a unit vector and h1 an angle in (0, p).

Suppose (u, h) is any other axis–angle pair. Define

dBððu; hÞ; ðu1; h1ÞÞ ¼ R1=2
0 maxfjh� h1j; arccosðu � u1Þg:

We can now rewrite Brandon’s criterion for the

rotation Q, specified by (u, h), being close to the

rotation Q1, specified by (u1, h1), as

dBððu; hÞ; ðu1; h1ÞÞ\p=12:

(Observe that the S1/2 is in the definition of dB rather

than as a factor dividing the p/12.) Actually, Brandon is

J. W. Cahn
Materials Science and Engineering Laboratory, NIST,
Gaithersburg, MD 20899-8555, USA

J. E. Taylor (&)
Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012, USA
e-mail: jtaylor@cims.nyu.edu

J Mater Sci (2006) 41:7669–7674

DOI 10.1007/s10853-006-0592-8

123

Metrics, measures, and parametrizations for grain boundaries:
a dialog

John W. Cahn Æ Jean E. Taylor

Received: 3 April 2006 / Accepted: 19 June 2006 / Published online: 24 October 2006
� Springer Science+Business Media, LLC 2006



somewhat unclear here; he said that the maximum

deviation should be p/(12S1/2) and applied that state-

ment correctly for the axis, but then said that the range

of the angle of rotation should be that quantity rather

than twice that quantity (allowing the angle to be more

or less than that for perfect coincidence). I’m going

with the word ‘‘deviation.‘‘ Also, he effectively limits

his axes to the upper hemisphere (in fact, to a partic-

ular spherical triangle) and allows the angle of rotation

to be between 0 and 2p; I will allow any axis, limit the

angle to between 0 and p, and invoke crystal symmetry

explicitly later. For completeness, we could define

cases for which (u1, h1) does not yield a CSL,

dBððu; hÞ; ðu1; h1ÞÞ ¼ 1;

except we then need to define the special case dB((u, h),

(u1, h1)) = 0 if (u, h) is equivalent under symmetry to

(u1, h1). Making use of the symmetry of the three cubic

Bravais lattices (simple, face- or body-centered), we

can and should use equivalence classes, and define dB

instead to be the Brandon-distance to the nearest CSL:

namely, the minimum, over all (u*, h*) equivalent to (u,

h), of S0
1/2 max{|h* – h1|, arccos(u*Æ u1)}.

This Brandon-distance dB is not symmetric: for any

two given rotations dB((u1, h1), (u2, h2)) will usually not

be the same as dB((u2, h2), (u1, h1)), and in fact if one

rotation yields a CSL and the other does not, then one

dB can be small while the other is infinite. The Brandon

-distance dB does not satisfy the triangle inequality

(sum of lengths of any two sides of any trian-

gle—including one collapsed to a line segment—is

greater than or equal to the length of the third). An

example is two rotations that give CSLs, (u1, h1) and

(u2, h2), with u1 = u2 and with both S1 and S2 large, but

with there being an angle h between h1 and h2 such that

the CSL for the rotation about u1 by h has a small S.

The Brandon-distance does satisfy the distance crite-

rion of being non-negative. As for the last criterion,

that distance be zero if and only if the two rotations are

the same: This criterion holds, because in defining dB,

different representations of the same rotation are

regarded as the same.

2. Old metallurgist: Brandon used only the first 12

CSLs. If I don’t mind going to very large values of S,

isn’t every orientation relationship Brandon-close to

some CSL?

Young mathematician: That’s an interesting ques-

tion. We can now try to envision as corks on skewers

all rotations that are within Brandon-distance p/12 of

some rotation giving a CSL. To do this, instead of

thinking of rotations as being given by a pair (u, /),

which is in the unit sphere S2 times the interval (0, p), a

subset of R3 · R1 = R4, we instead envision rotations

as a subset of R3 by looking at the vectors /u (length /
in direction u). The skewer is the ray in direction u.

Given a rotation /u yielding a CSL with density S, all

rotation axes within S–1/2p/12 of u form a cone. The

additional requirement that the angle be within S–1/2p/

12 of / cuts off this cone by caps at angles above and

below / by S–1/2p/12.

If we represent the rotations in R3, the Brandon-

close rotations to a given rotation look like a tapered

cork on a skewer, but one still obtains the Brandon-

distance by multiplying the maximum of the angle

difference and the axis difference by S1/2—the

Brandon-distance isn’t ‘‘tapered,’’ only the way we

represent the rotations. One can handle the equivalent

rotations by taking the union over all elements of the

cubic symmetry group of each such cork-on-a-skewer.

Thus a S5 cork centered at h ¼ arctanð1=2Þ on (0,0,1)

produces another three corks on that skewer, centered

at h + p/2, p/2–h, and p – h, plus copies of these four on

each of the other five equivalent skewers, for a total of

24 equivalent corks. If the axis of rotation is (0,0,1),

then there are coincidence site lattices for every pair

(h, k) of mutually prime integers. Therefore there is a

cork around each point ð0; 0; arctanðh=kÞÞ on that

skewer. All points on this skewer are inside some cork

(in fact, by direct computation, if one includes small

angle GBs with angles within p/12 of zero, each angle

between 0 and p/4 is Brandon-close to one of the fol-

lowing:

0;p=4;arctanð1=2Þ;arctanð1=3Þ;arctanð2=3Þ;arctanð3=4Þ;

and larger angles of rotation are equivalent to one of

these). Your question is whether the union of all the

corks, over all rotation axes, completely fills in the solid

ball of radius p. Using Brandon’s method of measuring

the volume of these corks, namely as the area of the

spherical cap of axis directions times the range of the

rotation angle, the sum of volumes of the corks is

infinite, so we know there is lots of overlap. The

question (to which I don’t know the answer) is whether

every point in the ball is in some cork.

3. Old metallurgist: You mention a rotation angle

being close to zero degrees. How about such small

angle GBs? Brandon’s definition requires rotation

about any axis be less than 15�. The direction of the

rotation axes can be anything and the GB would still be

small angle. For any other S all three angles matter.

How do you resolve this?

Young mathematician: We can just add the Identity,

Id, to misorientation space, and define dB((u, h), Id) = |h|;
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once again, we might want to use the minimum of |h*|

over all equivalent rotations h* u* in place of |h|. (For

completion we could also define dB(Id, (u, h)) = |h|S1/2

if (u, h) yields a CSL, and dB(Id, (u, h)) = ¥ if (u, h)

doesn’t.) In other words, we handle the case of no

misorientation (which by extension of the previous

parametrization might have been thought of as zero

rotation angle about any axis) by just adding a point to

misorientation space and defining Brandon-distances

to and from it. Note that if we parameterize rotations

by the solid ball, then the point added can be taken to

be the center of the ball. For a true distance, we would

have to make sure the triangle inequality is satisfied,

but we already know it is not for the Brandon-distance

and so don’t worry about it here. In the solid ball

representation, now in addition to the corks on skewers

we have a ball of radius p/12 at the center-with the

skewers, it is rather like a party presentation of fruit, if

we limit to only a few CSLs at least.

4. Old metallurgist: You speak of corks in R3. Figure

5 in Brandon’s paper shows circles on a sphere. How

did he manage to lose a dimension?

Young mathematician: For his Fig. 5, Brandon plots

‘‘twinning directions,’’ considering rotations that come

from picking a normal direction to a plane and

obtaining interpenetrating lattices by reflecting the

lattice across that plane. Since the space of normal

directions is 2-dimensional and the space of all rota-

tions is 3-dimensional, he is only looking at a subset of

all possible rotations (using a reflection symmetry of

the lattice to convert a reflection into a rotation).

Similarly, the notion of distance for that subset, namely

the arc length on the sphere from one normal direction

to another, is quite different from dB. You can go from

twinning direction to axis–angle by forming the matrix

whose first column is the image of the vector (1,0,0)

under the reflection, the second is the image of

(0, – 1,0), and the third the image of (0,0,1). This is the

matrix for the rotation; from it, you can extract axis

and angle. For example, his circles for S5, S13a, and

S17a each wind up as four corks on (0,0,1) (and its

equivalent axes), while S3 and S7 yield corks on

(1,0,1).

5. Old metallurgist: I have another question:

should the three angles in an orientation relation be

given equal weight? There is evidence for a S17 in

tetragonal tin that there are differences when small

tilt, twist, or misorientation components are added

[2]. Surely there will be similar differences for cubic

crystals? For a S3 twin in fcc, I would expect a big

difference between a 5� greater rotation about exact

< 111 > , and an exact 60� rotation about an axis

that is 5� off < 111 >.

Young mathematician: Now you are asking about

why should one use

R1=2
0 maxfjh� h1j; arccosðu � u1Þg

rather than, say, counting closeness of h more, or

misorientation angles differently, or whatever. When

you are giving just one number to measure a distance

between two things that are inherently 3-dimensional,

there will always be such questions. It is a bit like trying

to find a metric for how mismatched your clothing is if

you wear different color socks and/or different style

shoes. The distance you choose to use will depend on

the concept you are trying to express.

6. Old metallurgist: Can you give some other exam-

ples of parametrizations and metrics used on the space of

all rotations?

Young mathematician: As for Parametrizations, I’ve

already discussed using axis–angle ((u, h)) and the solid

ball (hu). We’ve seen some of the advantages and

disadvantages of each for visualization. In general,

both have multiple representations of the same rota-

tion when the angle is p, as well as multiple rotations

equivalent by symmetry, which are rather difficult to

compute in these parametrizations.

I also mentioned the common parametrization as a

3 · 3 matrix A with AAT ¼ Id; detðAÞ ¼ þ1: There

are many advantages to such a representation: there is

a one-to-one correspondence between such matrices

and rotations (thus SO(3) may be used as the notation

both for such matrices and for all rotations), they can

be determined by finding the images of the coordinate

vectors, and composition of rotations is multiplication

of matrices. In addition, the set of all matrices which

are equivalent to a given matrix can be found by

multiplying that matrix by the elements of the sym-

metry subgroup. A disadvantage is that matrices in

SO(3) form a three-dimensional subset of a nine-

dimensional space (namely, all 3 · 3 matrices).

An excellent choice for parametrization is an

apparently minor variation in the solid-ball represen-

tation hu, namely sinðh=2Þu. By adding one more

number, cos(h/2) to the zeroth position of this triple,

one obtains a unit quaternion e ¼ fcosðh=2Þ; sinðh=2Þug
(see, for example, the online encyclopedia wikipe-

dia.org for definitions and usage and [3] for applica-

tions in materials science). There are precisely two

quaternions, – e as well as e, to represent each rotation

(corresponding to the fact that rotation by h about u is
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the same as rotation by 2p – h about – u); in defining

distances, one always uses the choice giving the

smallest result.

Multiplication with quaternions is slightly compli-

cated,1 but it and other operations with quaternions are

part of most mathematical packages for computers.

The inverse is simple: replace h by – h. The image of a

point p under the rotation represented by the quater-

nion e is the point q, where e(0, p1, p2, p3) e–1 = (0, q1,

q2, q3). Composition of rotations parameterized by

quaternions e and f is just quaternion multiplication ef.
Because quaternions are more efficient for computa-

tion, much of the 3D graphics in computer games is

done with quaternions.

Finally, one more parametrization sometimes used

for rotations is the set of Euler angles: roll, pitch, and

yaw. These are more useful for flying airplanes than for

materials science.

As for Metrics and Measures, it is important to

realize that the choice of parametrization does not

require any particular metric or measure, or vice versa.

Any metric can be expressed in any parametrization,

although some parametrizations are much easier for

describing the physics or for computation using a given

metric. For example, if using the h u parametrization,

one does NOT want to use the usual metric on R3; for

example, points on opposite sides of the boundary of

the ball represent the same rotation! The metric used

will determine gradients, and the measure (volume

element) will determine densities, proportion of rota-

tions satisfying a given condition, etc. Any time you use

or see such quantities, be aware of what metric and

measure is being used.

There is a unique (up to scale) measure (volume

element) on SO(3) which is invariant under rotations;

the same is true for R3 and the unit sphere S2 (where

the measure is the usual area). To try to estimate what

fraction of rotations are close to one of the rotations

yielding a CSL with S = 19 or less, Brandon used the

measure which is the product of the usual area on the

sphere S2 and the usual length on the circle (quoting

from [1] again, ‘‘..the total angular range to be covered,

p/6 · 2p’’). This gives a greater amount of weight to

angles which are close to zero (small-angle GBs) than

if one were to use the invariant measure on SO(3), as

Warrington and Boon [4] did. They also count all the

rotations equivalent to a given rotation carefully, fur-

ther explaining the difference between their results and

Brandon’s. By using an invariant measure in [4], all

rotations close to, say, the rotation by angle v about

[001] are found by multiplying all rotations appropri-

ately close to the Identity by that rotation. (The set of

all rotations near the Identity is a little 3-dimensional

chunk of SO(3); multiplying that by the matrix for

another rotation gives a little 3-dimensional chunk of

SO(3) surrounding that rotation.)

The only rotationally and translationally invariant

metric on R3 is the usual Euclidian distance. There are

at least three invariant metrics in common use for the

distance between two rotations in SO(3), all based on

the angle h (in [0, p]) of the rotation Q resulting from

doing one rotation followed by the inverse of the other

(the resulting axis doesn’t enter into this definition).

One is h itself, another is 2 sinðh=2Þ, which is the square

root of the sum of the squares of the nine entries in the

matrix for Q; it is also given by matrix operations.2 The

third is 2 sinðh=4Þ, the length of the quaternion which is

the difference of the quaternions representing Q and

the identity. The distances are different because the

first requires any path between the rotations to stay in

SO(3), the second allows the path to go through all

matrices, and the third has a naturally different scale

parameter, and allows paths to go through all quater-

nions, not just unit ones. It is perhaps easier to see this

for SO(2), where h is the arc length going around the

circle and 2 sinðh=2Þ is the length of the chord, which is

the distance between the two points as points in R2.

Only the first metric, h, is what mathematicians call a

Riemannian metric on SO(3), as such metrics must use

paths which stay in the manifold.

7. Old metallurgist: I now know something about the

three angles which characterize an orientation rela-

tionship, but five angles are needed to characterize a

GB. Don’t the other two matter?

Young mathematician: Certainly, and all the issues

I’ve raised concerning parametrizations and metrics on

SO(3) apply (even more strongly) to all the angles of

grain boundaries. It is easiest to illustrate this with

grain boundaries between 2-dimensional grains. Such

GBs can be parameterized by the misorientation,

which can be given by one angle, and by the normal

direction, which can be given by the angle from some

specified direction. This space of angles can be

parameterized by a rectangle in the plane, with the

angle of the normal along the x-axis and the angle of

the misorientation along the y-axis. Issues of parame-

trization versus metric are clear when one makes the

analogy to a map of the earth on a rectangle, where

longitude is the x-coordinate and latitude the y-coordinate.

This is a perfectly good parametrization of the earth

1 Write e = (e0, v) and f = (f0, w);
then ef = (e0f0–v\cdot w, e0w + f0v + v\times w).

2 If A and B are the matrices of the rotations, this is also
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� traceðA�1BÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2traceðA� BÞðA� BÞT

q

:
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minus its poles. Longitude is periodic of period 360

degrees, and so one might repeat the map periodically

in the x-direction, or might imagine the map being

rolled into a tube with the x-axis rolled into the circle

representing the equator; similarly for GBs. One would

not want to use the usual metric on the plane to

determine distances on the earth, except perhaps very

locally near the equator. For a metric on grain

boundaries, there is absolutely no inherent reason to

use the usual invariant distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDxÞ2 þ ðDyÞ2
q

any-

where in the plane, as misorientation and normal

direction are two quite different things, with no sym-

metry operations mixing them up. A reasonable defi-

nition of distance between (h, hn) and (h*, hn
*) might be

the Manhattan metric or its cousins with a relative

weight factor w

jh� h�j þ jhn � h�nj or maxfjh� h�j; jhn � h�njg
or maxfjh� h�j;wjhn � h�njg or jh� h�j þwjhn � h�nj:

Again, one would want to take the minimum over all

equivalent (under symmetry operations) GBs. In con-

trast to the map of the earth, there is periodicity in the

misorientation variable as well, so the rectangle should

be repeated in the y-direction as well as the x-direction.

8. Old metallurgist: What about low-angle grain

boundaries close to the no-boundary limit, as the

misorientation approaches zero?

Young mathematician: For interfaces between two

difference phases, a boundary between crystals still

exists when there is no misorientation; each different

normal direction at zero misorientation corresponds to

an interface. But for GBs, there is no boundary where

there is no misorientation. There are two possible ways

to deal with this:

1. Declare it not to be a problem—just as the poles

are omitted in the rectangular map of the earth, we

can omit the horizontal lines corresponding to the

misorientation being 0 (or a multiple of 2p). The

fact that quantities such as specific surface free

energy c go to zero as the misorientation

approaches zero for any fixed normal direction

does not REQUIRE the distances between their

angle sets to go to zero. (But such distances will

greatly affect gradients!)

2. Compactify the space of grain boundaries by add-

ing a single point called nil. Now for any metric,

points that are close to nil would also have to be

close to each other. This is analogous to adding in

the poles to the rectangle map of the earth—except

that for grain boundaries, one adds only one point

nil and so the ‘‘south pole’’ would be the same

point as the ‘‘north pole’’ and points close to the

‘‘south pole’’ would also be close to the ‘‘north

pole.’’

One can try to visualize metrics on the space of 2D

grain boundaries in the second way by the shape of the

links of an infinitely long linked sausage (though

actually each link is the same and all ends of the links

are the same point). The sausages could be spherical,

similar to copies of the earth placed pole to pole. They

could be double-cones, coming to a point at each end.

The latter shape would result from using the Manhat-

tan metric, but with the normal angle variable hn

multiplied by the misorientation angle h. Or they could

be some other shape. Measures can be inferred from

these shapes in R3 (but need not be). The metric and

measure could also be more complicated than can be

visualized by a surface in R3.

Symmetries can always be incorporated by replacing

actual distances by the minimum among all represen-

tatives of the same equivalence class.

There are analogs to all this for grain boundaries in

3D, except the 5-dimensional space is harder to visu-

alize. In particular, one can build a variety of metrics

and measures on the space of angles characterizing GB

between 3D crystals, including nil, based on any metric

dSO(3) on SO(3) and any metric dR
3 on R3. Given GBs

((u, h), n) and ((u¢, h¢), n¢), define N = hn and N¢ =

h¢n¢. As examples, one can choose any of

dSOð3Þððu; hÞ; ðu0; h0ÞÞ þ dR3ðN;N0Þ;
maxfdSOð3Þððu; hÞ; ðu0; h0ÞÞ þ dR3ðN;N0Þg;
ðdSOð3Þððu; hÞ; ðu0; h0ÞÞ2 þ dR3ðN;N0Þ2Þ1=2:

There are also many other possibilities, including

different weights. A measure on this space which in-

cludes nil might be the product of invariant measures

on SO(3) and R3, where one would use N = hn in place

of n for the R3 variable. And again, symmetries can

incorporated by replacing actual distances by the

minimum among all representatives of the same

equivalence class.

The ideas I’ve discussed can be used to analyze a

metric proposed by A. Morawiec [5] and used by

Saylor et al. [6–8]. Here the misorientation is param-

etrized by special orthogonal matrices m, and the

normal direction by unit vectors n in R3. Grain

boundaries are then specified by by a 4 · 4 matrix b,

with the upper left 3 · 3 corner being m, the lower

right corner 0, the remainder of the right-most column

being n, and the remainder of the bottom row being nT
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m. Define v(b, b¢), the distance from b :¼ ðm; nÞ to

b0 :¼ ðm0; n0Þ by

v2ðb;b0Þ ¼ jjb� b0jj2=2 ¼ traceððb� b0ÞTðb� b0ÞÞ=2

¼ 5� traceðmTm0Þ � n � n0 � ðmTnÞ � ðm0Tn0Þ
¼ 3� traceðmTm0Þ þ 1� ðn � n0Þ þ 1� ðmTnÞ � ðm0Tn0Þ:

One can observe several properties of this metric.

One is that it is straightforward to compute by matrix

operations. Another is that the distance does not

approach 0 as m approaches m¢; rather, v2 (m = m¢) = 2

(1 – (nÆn¢)). Therefore, in using this metric to define

bins, densities of grain boundaries will appear to be

lower for misorientations near the identity as compared

to metrics which go to zero as the GBs approach nil.

Finally, one sees that this metric intertwines n and m.

9. Old metallurgist: Let me see if I have your main

message straight. There are many possible parameter-

izations and metrics for hetero-phase interfaces and for

grain boundaries in 2D and 3D (2 or 5 angle dimensions).

Symmetries can be incorporated into a definition by

using a minimization over all grain boundaries equiv-

alent by symmetry to a given boundary. And the ‘‘no

boundary’’ singularity in GBs might be a clue to

appropriate metrics.

Young mathematician: Yes. The rest is up to you, in

your choice of metrics and parametrizations.

Old metallurgist: Thank you.
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